KAPASITAS POTENSI PARASITISME Trichogramma sp. (Hymenoptera: Trichogrammatidae) TERHADAP Corcyra sp.

  • Astrid Sri Wahyuni Sumah Universitas Muhammadiyah Palembang
  • Ali Alamsyah Kusumadinata Universitas Djuanda


Parasitism research Trichogramma sp. (Hymenoptera: Trichogrammatidae) has been carried out with the aim of studying the functional response of the parasitoid Trichogramma sp. Functional response is one measure to determine the effectiveness of a predator or parasitoid as an agent in biological control, so that it can express a change in the number of preys attacked by individual predators. Temperature is one of the most important host-parasitoid interactions in functional responses. The method used in the parasitoid parasitism Trichogramma sp. on the host Corcyra sp. using four levels of egg density Corcyra sp. with two different temperature treatments (27OC and room temperature). The results show the functional response model of the parasitoid Trichogramma sp. against its host Corcyra sp. described in the type I model. Parasitization level of Trichogramma sp. showed the same results for both temperature treatments, however, it also shows differences in the speed of predation. It also showed linearity between the parasitoids Trichogramma sp. with the host Corcyra sp. Parasitism rates are still increasing, along with an increase in host density. This research can be a starting point to improve the control of Corcyra sp. using the parasitoid Trichogramma sp. in the field.


Adom, M., Datinon, B., Tounou, A. K., Toffa-Mehinto, J. M. B., Dannon, E. A., Agboton, C., & Tamo, M. (2021). Suitability of three Lepidopteran host species for mass-rearing the egg parasitoid Trichogrammatoidea eldanae Viggiani (Hymenoptera: Trichogrammatidae) for biological control of cereal stemborers. International Journal of Tropical Insect Science, 41, 295-302.
Ahmad, M. J., Pathania, S. S., & Mohiuddin, S. (2017). Laboratory evaluation of anthocorid predator, Blaptostethus pallescens against storage pest, Corcyra cephalonica in rice. Journal of Experimental Zoology India, 20 (2), 897-900.
Carvalho, G. S., Silva, L. B., Reis, S. S., Veras, M. S., Carneiro, E., Almeida, M. L. S., Silva, A. F., & Lopes, G. N. (2017). Biological parameters and thermal requirements of Trichogramma pretiosum reared on Helicoverpa armigera eggs. Pesquisa Agropecuária Brasileira, 52: 961-968.
Canavero, A., Arim, M., Pérez, F., Jaksic, F. M., & Marquet, P. A. (2017). A metabolic view of amphibian local community structure: the role of activation energi. Ecography, 41 (2), 388-400.
Chen, X., Wong, S. W. K., & Stansly, P. A. (2016). Functional response of Tamarixia radiata (Hymenoptera: Eulophidae) to densities of its host, Diaphorina citri (Hemiptera: Psylloidea). Annals of the Entomological Society of America, 109 (3), 432–437.
Cuthbert, R. N., Dick, J. T. A., Callaghan, A., & Dickey, J. W. E. (2018). Biological control agent selection under environmental change using functional responses, abundances and fecundities; the Relative Control Potential (RCP) metric. Biological Control, 121, 50-57.
Daugaard, U., Petchey, O. L., & Pennekamp, F. (2019). Warming can destabilize predator-prey interactions by shifting the functional responses from type III to type II. Journal of Animal Ecology, 88 (10), 1575-1586.
Davies, A. P., Pufke, U. S., & Zalucki, M. P. (2019). Trichogramma (Hymenoptera: Trichogrammatidae) Ecology in a Tropical Bt Transgenic Cotton Cropping System: 18 Sampling to Improve Seasonal Pest Impact Estimates in the Ord River Irrigation Area, Australia. Journal Economic Entomological, 102: 1018-1031.
de Carvalho, J. R., Pratissoli, D., Dalvi, L. P., Silva, M. A., de Freitas Bueno, R. C. O., & Bueno, A. de F. (2014). Capacidade de parasitismo de trichogramma pretiosum em ovos de trichoplusia ni em diferentes temperaturas. Acta Scientiarum - Agronomy, 36(4), 417–424.
de Lourdes Correa Figueiredo, M., Cruz, I., da Silva, R. B., & Foster, J. E. (2015). Biological control with Trichogramma pretiosum increases organic maize productivity by 19,4%. Agronomy for Sustainable Development, 35, 1175-1183.
Denny, M. (2014). Buzz holling and functional response. Bulletin of the Ecological Society of America, 95 (3), 200-203.
Dong, H., Liu, Q., Xie, L., Cong, B., & Wang, H. (2017). Functional response of Wolbachia-infected and uninfected Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) to Asian corn borer, Ostrinia furnacalis Guenée (Lepidoptera: Pyralidae) eggs. Journal Asia Pacific of Entomology, 20, 787–793.
Dunn, R. P., & Hovel, K. (2020). Predator type influences the frequency of functional responses to prey in marine habitats. Biology Letter, 16, 20190758–20190758.
Ebrahimifar, J., Jamshidnia, A., & Allahyari, H. (2017). Functional response of Eretmocerus delhiensis on Trialeurodes vaporariorum by parasitism and host feeding. Journal of Insect Science, 17 (2), 56.
Fragoso, D. F. M., Pratissoli, D., de Carvalho, J. R., Damascena, A. P., Junior, L. M. A., Bueno, R. C. O. F., & Túler, A. C. (2019). Capacity for Parasitism of Trichogramma spp. in Tomato Fruit Borer under Different Temperatures. Journal of Experimental Agriculture Internasional, 38 (5); 1-8.
Firake, D. M., & Khan, M. A. (2014). Alternating temperatures affect the performance of Trichogramma species. Journal of Insect Science, 14, 1–14.
Foerster, M. R., Marchioro, C. A., & Foerster, L. A. (2015). How Trichogramma survives during soybean offseason in Southern Brazil and the implications for its success as a biocontrol agent. BioControl, 60(1), 1–11.
Geremias, L. D., & Parra, J. R. P. (2014). Dispersal of Trichogramma galloi in corn for the control of Diatraea saccharalis. Biocontrol Science and Technology, 24: 751-762.
Ghorbani, R., Seraj, A. A., Allahyari, H., & Farrokhi, S. (2019). Functional response of Trichogramma evanescens parasitizing tomato leaf miner, Tuta absoluta on three tomato varieties. Journal of Agriculture Science and Technology, 21, 117-127.
Godfray, H. (1994). Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press.
Hassel, M. (2000). The Spatial and Temporal Dynamics of Host-Parasitoid Interactions. Oxford University Press.
Holling, C. (1959). Some characteristics of simple types of predation and parasitism. Canadian Entomology , 91, 365–398.
Jalali, S. K., Mohanraj, P., & Lakshmi, B. L. (2016). Trichogrammatids. In Omkar (Ed). Ecofriendly Pest management For Food Security. India: Academic Press
Jeschke, J. M., Laforsch, C., Diel, P., Diller, J. G. P., Horstmann, M., & Tollrian, R. (2022). Predation. In Thomas Mehner & Klemet Tockner (Ed), Encyclopedia of Inland Waters. Germany: Elsevier.
Kacar, G., Wang, X-G., Biondi, A., & Daane, K. M. (2017). Linear functional response by two pupal Drosophila parasitoids foraging within single or multiple patch environments. PLoS ONE, 12(8): e0183525.
Kalinkat, G., Schneider, F. D., Digel, C., Guill, C., Rall, B. C., & Brose, U. (2013). Body masses, functional responses and predator–prey stability. Ecology Letters, 16, 1126-1134.
Kristina, R, Kristina, J., Anderson‐Teixeira, F. A. Smith, D. J. H., & Ernest, S. K. M. (2018). Body size shifts influence effects of increasing temperatures on ectotherm metabolism. Global Ecology and Biogeography, 27 (8), 958-967.
Lindmark, M., Huss, M., Ohlberger, J., & Gardmark, A. (2017). Temperature-dependent body size effects determine population responses to climate warming. Ecology letters, 21 (2), 181-189.
Louapre, P., Le Lann, C., & Hance, T. (2018). When parasitoids deal with the spatial distribution of their hosts: consequences for both partners. Insect Sciences, 00, 1-9.
Milanez, A. M., de Carvalho, J. R., Lima, V. L. S., & Pratissoli, D. (2018). Functional response of Trichogramma pretiosum on Trichoplusia ni eggs at different temperatures and egg densities. Pesquisa Agropecuaria Brasileira, 53(5), 641–645.
Mbata, G. N., & Warsi, S. (2019). Habrobracon hebetor and Pteromalus cerealellae as tools in post-harvest integrated pest management. Insects, 10 (4), 85.
Mohammadpour, M., Hosseini, M., Karimi, J., & Hosseininaveh, V. (2019). Effects of age-dependent parasitism in eggs of Tuta absoluta (Lepidoptera: Gelechiidae) on Intraguild predation between Nabis pseudoferus (Hemiptera: Nabidae) and Trichogramma brassicae (Hymenoptera: Trichogrammatidae). Journal of Insect Science, 19 (3), 27.
Nikbin, R., Sahragard, A., & Hosseini, M. (2014). Age-specific Functional Response of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) Parasitizing Different Egg Densities of Ephestia kuehniella (Lepidoptera: Pyralidae). In Journal of Agriculture and Science Technology, 16.
Nunez-Campero, S. R., Benitez-Vieyra, S., Gorla, D. E., Ovruski, S. M. (2016). Changes in Diachasmimorpha longicaudata (Hymenoptera: Braconidae) functional response as a consequence of host density choice. Annals of the Entomological Society of America, 109(5): 730–6.
Oliveira, C. M., Oliveira, J. V., Silva, Barbosa, D. R., Breda, M. O., França, S. M., & Duarte, B. L. R. (2017). Biological parameters and thermal requirements of Trichogramma pretiosum of the management of the tomato fruit borer (Lepidoptera: Crambidae) in tomatos. Crop Protection, 99:39-44.
OS, N., & Varshney, R. (2018). Utilization of Trichogrammatid Egg Parasitoid in Pest Management. Acta Scientific Agriculture, 2 (3), 49-53.
Padhy, D., Ramlakshmi, V., Dash, L., & Sahu, A. K. (2020). Advances in rearing of the laboratory host-rice moth Corcyra cephalonica Stainton. Indian Journal of Pure and Applied Bioscience, 8 (6), 501-510.
Papanikolaou, N. E., Broufas, G. D., Papachristos, D. P., Pappas, M. L., Kyriakaki, C., Samaras, K., & Kypraios, T. (2020). On the mechanistic understanding of predator feeding behavior using the functional response concept. Ecosphere, 11( 5), 1-9.
Rakes, M., Pasini, R. A., Morais, M. C., Araujo, M. B., de Bastos Pazini, J., Seidel, E. J., Bernardi, D., & Grutzmacher, A. D. (2021). Pesticide selectivity to the parasitoid Trichogramma pretiosum: a pattern 10-year database and its implications for integrated pest management. Ecotoxicology and Environmental Safety, 208, 111504.
Rahimi-Kaldeh, S., Ashouri, A., Bandani, A., & Ris, N. (2018). Abiotic and biotic factors influence diapause induction n sexual and asexual strains of Trichogramma brassicae (Hym: Trichogrammatidae). Scientific Reports, 8: 1-6.
Rossini, L., Speranza, S., Severini, M., Locatelli, D. P., & Limonta, L. (2021). Life tables and a physiologically based model application to Corcyra cephalonica (Stainton) populations. Journal of Stored Products Research, 91, 101781.
Schäfer, L., & Herz, A. (2020). Suitability of European Trichogramma Species as Biocontrol Agents against the Tomato Leaf Miner Tuta absoluta. Insects, 11 (6): 357.
Sentis, A., & Boukal, D. S. (2018). On the use of functional responses to quantify emergent multiple predator effects. Scientific Reports, 8, 11787.
Singh, A. (2022). A compatarive approach to stabilizing mechanism between discrete- and continuous-time consumer-resource models. Plos One, 17 (4), e0265825.
Steel, R., & Torrie, J. (1989). Prinsip dan Prosedur Statistika: Suatu Pendekatan Biometrik. (S. (Alih B. B, Ed.). Gramedia Pustaka Utama.
Stefan, M. L. & Jonathan, M. J. (2019). Towards a mechanistic understanding of individual‐level functional responses: Invasive crayfish as model organisms. Freshwater Biology, 65 (4), 657-673.
Stollenwerk, N., Aguiar, M., & Kooi, B. W. (2022). Modelling Holling type II functional response in deterministic and stochastic food chain models with mass conservation. Ecological Complexity, 49, 100982.
Susilo, F. (2007). Pengendalian Hayati dengan Memberdayakan Musuh Alami Hama Tanaman. Graha Ilmu .
Tarumingkeng, R. (1992). Dinamika Pertumbuhan Populasi Serangga. Institut Pertanian Bogor Press.
Urban, M. C., Freidenfelds, N. A., & Richards, J. L. (2020). Microgeographic divergence of functional responses among salamanders under antagonistic selection from apex predators. Proceedings Biological Sciences, 287 (1938), 20201665.
Uszko, W., Diehl, S., Englund, G., & Amarasekare, P. (2017). Effects of warming on predator–prey interactions: a resource-based approach and a theoretical synthesis. Ecology Letters, 20, 513–523.
Valderrama, D., & Fields, K. H. (2016). Flawed evidence supporting the Metabolic Theory of Ecology may undermine goals of ecosystem-based fishery management: the case of invasive Indo-Pacific lionfish in the western Atlantic. ICES Journal of Marine Science, 74 (5), 1256-1267.
Vincent, A., Singh, D., & Mathew I. L. (2021). Corcyra cephalonica: a serious pest of stored products or a factitious host of biocontrol agents?. Journal of Stored Products Research, 94, 101876.
Wang, Z., Lui, Y., Shi, M., Huang, J., & Chen, X. (2018). Parasitoids wasps as effective biological control agents. Science Direct, 17: 60345-603457.
Wang, Z-Q., Zhou, X-G., Xiao, Q., Tang, P., & Chen, X-X. (2022). The potential of Parapanteles hyposidrae and Protapanteles immunis (Hymenoptera: Braconidae) as biological control for the tea grey geometrid Ectropis grisescens (Lepidoptera). Insects, 13, 937.
Zhang, Y-B., Zhang, G-F., Liu, W-X., & Wan, F-G. (2019). Variable temperatures across different stages have novel effects on behavioral response and population viability in a host-feeding parasitoid. Scientific Reports, 9, 2202.