AKTIVITAS ANTIJAMUR PELAPUK KAYU NANOPARTIKEL KITOSAN-EKSTRAK N-HEKSAN DAGING BUAH KAYU GADIS (Cinnamomum parthenoxylon)
Abstract
This study aims to synthesize chitosan nanoparticles - n-hexane extract of Cinnamomum parthenoxylon (CP) fruit using the ionic gelation method, to characterize them, and to determine their antifungal activity against the wood-rotting fungi Trametes versicolor and Fomitopsis palustris. Chitosan-CP extract nanoparticles were formulated with chitosan:Na-TPP:CP extract ratio of 1:1:0.5. Particle size and polydispersity index were determined using a particle size analyzer (PSA), and particles morphology was observed using a scanning electron microscope (SEM), and antifungal activity was measured using agar media. The results revealed that the average size of chitosan nanoparticles (base) was 276.9 nm, while the average size of chitosan-CP extract nanoparticles was 807.6 nm. The polydispersity index (PI) of both nanoparticles was greater than 0.7. Observations of the nanoparticles' morphology revealed that aggregation/agglomeration formed in the resulting particles. Both nanoparticles chitosan (base) and chitosan-CP extract inhibited the growth of white rot fungi (T. versicolor) more than brown rot fungi (F. palustris), as measured by the inhibitory zone.
References
Adfa, M., Livandri, F., Meita, N. P., Manaf, S., Ninomiya, M., Gustian, I., Putranto, A. M. H., Supriati, R., Koketsu, M. (2015). Termiticidal Activity of Acorus calamus Linn. Rhizomes and Its Main Constituents against Coptotermes curvignathus Holmgren. Journal of Asia-Pacific Entomology, 18(1), 47–50. https://doi.org/10.1016/j.aspen.2014.10.012
Adfa, M., Romayasa, A., Kusnanda, A. J., Avidlyandi, A., Yudha S., S., Banon, C., & Gustian, I. (2020). Chemical Components, Antitermite and Antifungal Activities of Cinnamomum parthenoxylon Wood Vinegar. Journal of the Korean Wood Science and Technology, 48(1), 107–116. https://doi.org/10.5658/WOOD.2020.48.1.107
Adfa, M., Sanusi, A., Manaf, S., Gustian, I., & Banon, C. (2017). Antitermitic Activity of Cinnamomum parthenoxylon Leaves against Coptotermes curvignathus. Oriental Journal of Chemistry, 33(6), 3063–3068. https://doi.org/10.13005/ojc/330646
Anandharamakrishnan, C. (2014). Techniques for Nanoencapsulation of Food Ingredients. In Techniques for Nanoencapsulation of Food Ingredients. Retrieved from http://link.springer.com/10.1007/978-1-4614-9387-7_3
Broda, M. (2020). Natural Compounds for Wood Protection against Fungi—A Review. Molecules, 25(15), 1-24.
Chittenden, C., & Singh, T. (2011). Antifungal Activity of Essential Oils against Wood Degrading Fungi and Their Applications as Wood Preservatives. International Wood Products Journal, 2(1), 44–48. https://doi.org/10.1179/2042645311Y.0000000004
Celimene, C. C., Micales, J. A., Ferge, L., & Young, R. A. (1999). Efficacy of Pinosylvins against White-rot and Brown-rot Fungi. Holzforschung, 53(5), 491–497. https://doi.org/10.1515/HF.1999.081
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., Mozafari, M. R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 1–17. https://doi.org/10.3390/pharmaceutics10020057
Fuchino, H., Yazawa, A., Kiuchi, F., Kawahara, N., Takahashi, Y., & Satake, M. (2015). Novel Monoterpene Lactones from Cinnamomum inunctum. Chemical and Pharmaceutical Bulletin, 63(10), 833–836. https://doi.org/10.1248/cpb.c15-00368
Ing, L. Y., Zin, N. M., Sarwar, A., & Katas, H. (2012). Antifungal Activity of Chitosan Nanoparticles and Correlation with Their Physical Properties. International Journal of Biomaterials, 2012, 1–9. https://doi.org/10.1155/2012/632698
Jia, Q., Liu, X., Wu, X., Wang, R., Hu, X., Li, Y., & Huang, C. (2009). Hypoglycemic Activity of a Polyphenolic Oligomer-Rich Extract of Cinnamomum parthenoxylon Bark in Normal and Streptozotocin-Induced Diabetic Rats. Phytomedicine, 16(8), 744–750. https://doi.org/10.1016/j.phymed.2008.12.012
Kain, D., & Kumar, S. (2020). Synthesis and Characterization of Chitosan Nanoparticles of Achillea millefolium L. and Their Activities. F1000Research, 9, 1297. https://doi.org/10.12688/f1000research.26446.1
Kawamura, F., Ohara, S., & Nishida, A. (2004). Antifungal Activity of Constituents from The Heartwood of Gmelina arborea: Part 1. Sensitive Antifungal Assay against Basidiomycetes. Holzforschung, 58(2), 189–192. https://doi.org/10.1515/ HF.2004.028
Kawamura, F., Ramle, S. F. M., Sulaiman, O., Hashim, R., & Ohara, S. (2011). Antioxidant and Antifungal Activities of Extracts from 15 Selected Hardwood Species of Malaysian timber. European Journal of Wood and Wood Products, 69(2), 207–212. https://doi.org/10.1007/s00107-010-0413-2
Martien, R., Adhyatmika, Irianto, I. D. K., Farida, V., & Sari, D. P. (2012). Perkembangan Teknologi Nanopartikel dalam Sistem Penghantaran Obat. Majalah Farmaseutik, 8(1), 133–144. Retrieved from https://www.academia.edu/download/ 41739804/Perkembangan_Teknologi_Nanopartikel_dala20160129-20505-1jxjfbc.pdf
Mohanraj, V. J., & Chen, Y. (2007). Nanoparticles - A review. Tropical Journal of Pharmaceutical Research, 5(1), 561–573. https://doi.org/10.4314/tjpr.v5i1.14634
Ningsih, N., Yasni, S., & Yuliani, S. (2017). Sintesis Nanopartikel Ekstrak Kulit Manggis Merah dan Kajian Sifat Fungsional Produk Enkapsulasinya. Jurnal Teknologi Dan Industri Pangan, 28(1), 27–35. https://doi.org/10.6066/jtip.2017.28.1.27
Oramahi, H. A., Yoshimura, T., Diba, F., Setyawati, D., & Nurhaida. (2018). Antifungal and Antitermitic Activities of Wood Vinegar from Oil Palm Trunk. Journal of Wood Science, 64(3), 311–317. https://doi.org/10.1007/s10086-018-1703-2
Phongpaichit, S., Kummee, S., Nilrat, L., & Itarat, A. (2007). Antimicrobial Activity of Oil from The Root of Cinnamomum porrectum. Songklanakarin Journal of Science and Technology, 29, 11–16.
Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and Antibacterial Activity of Chitosan Nanoparticles. Carbohydrate Research, 339(16), 2693–2700. https://doi.org/10.1016/j.carres.2004.09.007
Qin, Y., Li, P., & Guo, Z. (2020). Cationic Chitosan Derivatives as Potential Antifungals: A Review of Structural Optimization and Applications. Carbohydrate Polymers, 236, 116002. https://doi.org/10.1016/j.carbpol.2020.116002
Shetta, A., Kegere, J., & Mamdouh, W. (2019). Comparative Study of Encapsulated Peppermint and Green Tea Essential Oils in Chitosan Nanoparticles: Encapsulation, Thermal Stability, In-vitro Release, Antioxidant and Antibacterial Activities. International Journal of Biological Macromolecules, 126, 731–742. https://doi.org/10.1016/j.ijbiomac.2018.12.161
Sivakami, M. S., Gomathi, T., Venkatesan, J., Jeong, H., Kim, S., & Sudha, P. N. (2013). Preparation and Characterization of Nano Chitosan for Treatment Wastewaters. International Journal of Biological Macromolecules, 57, 204–212. https://doi.org/10.1016/j.ijbiomac.2013.03.005
Teoh, Y. P., Mashitah, M. D., & Salmiah, U. (2015). Antifungal Activities of Selected Wood-Degrading Fungi of Rubberwood. Journal of Tropical Forest Science, 27(3), 325–333. https://www.jstor.org/stable/43490290
Voda, K., Boh, B., & Vrtačnik, M. (2004). A Quantitative Structure–Antifungal Activity Relationship Study of Oxygenated Aromatic Essential oil Compounds Using Data Structuring and PLS Regression Analysis. Journal of Molecular Modeling, 10, 76–84. https://doi.org/10.1007/s00894-003-0174-5
Wang, J., Su, B., Jiang, H., Cui, N., Yu, Z., Yang, Y., & Sun, Y. (2020). Traditional Uses, Phytochemistry and Pharmacological Activities of The Genus Cinnamomum (Lauraceae): a Review. Fitoterapia, 146, 104675. https://doi.org/10.1016/j.fitote.2020.104675
Xu, T., Xin, M., Li, M., Huang, H., & Zhou, S. (2010). Synthesis, Characteristic and Antibacterial Activity of N,N,N-trimethyl Chitosan and Its Carboxymethyl Derivatives. Carbohydrate Polymers, 81(4), 931–936. https://doi.org/10.1016/j.carbpol.2010.04.008
Zare, Y. (2016). Study of Nanoparticles Aggregation/Agglomeration in Polymer Particulate Nanocomposites by Mechanical Properties. Composites: Part A, 84, 158–164. https://doi.org/10.1016/j.compositesa.2016.01.020